AVFDT: Adaptive Very Fast Decision Tree

Preliminary Results

Eva García-Martín, N. Lavesson, H. Grahn, E. Casalicchio, V. Boeva
Blekinge Institute of Technology
{eva.garcia.martin@bth.se}

INTRODUCTION

Problem

Machine learning algorithms account for a significant amount of energy consumption in data centers.

Goal

Reduce energy consumption of online decision trees.

How?

Adaptive Very Fast Decision Tree (AVFDT). Extension of the VFDT that uses the nmin adaptation method.

Very Fast Decision Tree (VFDT [1])

- VFDT builds a tree incrementally
- After nmin instances are observed at a node, the best attributes are obtained (information gain)
- If (∆G>ε) or (∆G<ε and ε<τ) → Split
- If no split → A lot of energy is wasted to calculate the best attributes

AVFDT

Method: Adaptation of the nmin parameter for Hoefding Trees.

How?: Dynamically adapt the value of nmin depending on the incoming data. The goal is to set nmin to a value that ensures a split on the node.

RESULTS

- AVFDT consumes 23% less energy in average
- On average, AVFDT achieves <1% less accuracy
- AVFDT obtains a maximum 89% energy decrease

REFERENCES

MOTIVATION

Reducing the energy consumption of algorithms

Energy efficient data centers

Run ML algos on embedded systems

EXPERIMENT

- Comparison: AVFDT vs VFDT
- 7 datasets: 4 artificial, 3 real
- 3 values of nmin: 20, 200, 2000

REFERENCES

Icons: The noun project. https://thenounproject.com